EMBEDDED PROJECTS


Technofist is a well established and experienced IT consulting, Embedded solutions and application development company in Bangalore. We have the best in class infrastructure, lab set up , Training facilities, And experienced research and development team for both educational and corporate sectors.
OUR COMPANY VALUES : Instead of Quality, commitment and success.
OUR CUSTOMERS are delighted with the business benefits of the Technofist software solutions.

VLSI BASED PROJECTS

This category consists of VLSI 2017 project list with abstract/synopsis.Here we provide latest collection of topics developed using latest embedded technology concepts.Latest VLSI topics,Latest VLSI concept for diplomo,Engineering students,VLSI project centers in Bangalore with high quality training and development.Here is a list of project ideas for VLSI concepts. Students belonging to third year mini projects or final year projects can use these projects as mini-projects as well as mega-projects. If you have questions regarding these projects feel free to contct us. You may also ask for abstract of a project idea that you have or want to work on.The own projects idea for diploma and Engineering students can also be done here.

MEO01 VLSI-FPGA IMPLEMENTATION OF AES ALGORITHM SYNOPSIS
MEO02 VLSI-FPGA IMPLEMENTATION OF PIPELINED FAST FOURIER TRANSFORM (FFT) ALGORITHM SYNOPSIS
MEO03 VLSI -FPGA IMPLEMENTATION OF GMSK TRANSMITTER SYNOPSIS
MEO04 VLSI-FPGA IMPLEMENTATION OF OFDM IP SYNOPSIS
MEO05 VLSI-FPGA IMPLEMENTATION OF A SINGLE-CYCLE PROCESSOR FOR A SUBSET OF THE MIPS ARCHITECTURE IN VERILOG HDL (HARDWARE DESCRIPTION LANGUAGE) SYNOPSIS
MEO06 VLSI-FPGA IMPLEMENTATION VITERBI DECODER SYNOPSIS

Technofist, Bangalore offers 2017 IEEE Projects on CMOS/VLSI for final year engineering students and Final year engineering projects on CMOS/VLSI . Embedded based 2017 IEEE Projects on CMOS/VLSI projects for M.Tech, EC and BE students. Technofist , Bangalore also offer online training for projects on CMOS/VLSI for final year engineering Students and Final year engineering projects on CMOS/VLSI for ECE and engineering students. Technofist offers 2017 IEEE Projects training on software JAVA at low cost. See this section for list of Projects on CMOS/VLSI or Contact us for details and projects on CMOS/VLSI.

IEEE 2017-2018 CMOS/VLSI project list for m.tech /be / b tech / mca / M.sc students in bangalore.
Technofist offers CMOS/VLSI based IEEE projects for Mtech and BE final year students. Here at technofist we use Embedded platform to work on CMOS/VLSI projects.. We have technical team who are skilled enough to provide solution on latest IEEE related CMOS/VLSI projects. Get analytics and Embedded based projects on CMOS/VLSI using C/C++ as core programming language.

Get top quality and trending IEEE CMOS/VLSI projects from here and do it by yourself. We are continuously adding more CMOS/VLSI final year project ideas, so you could find new opportunities in CMOS/VLSI Science. Take reference or would like to start your training from our or yours idea on CMOS/VLSI projects.

Find latest 2017 topic ideas CMOS/VLSI projects for M.Tech students, and CMOS/VLSI projects for B.Tech students. Let us know your feedback and new ideas on CMOS/VLSI Projects.

ABOUT VLSI

This category consists of VLSI 2017 project list with abstract/synopsis.Here we provide latest collection of topics developed using latest embedded technology concepts.Latest VLSI topics,Latest VLSI concept for diplomo,Engineering students,VLSI project centers in Bangalore with high quality training and development.Here is a list of project ideas for VLSI concepts.

Students belonging to third year mini projects or final year projects can use these projects as mini-projects as well as mega-projects. If you have questions regarding these projects feel free to contct us. You may also ask for abstract of a project idea that you have or want to work on.The own projects idea for diploma and Engineering students can also be done here

VLSI

The development of microelectronics spans a time which is even lesser than the average life expectancy of a human, and yet it has seen as many as four generations. Early 60’s saw the low density fabrication processes classified under Small Scale Integration (SSI) in which transistor count was limited to about 10. This rapidly gave way to Medium Scale Integration in the late 60’s when around 100 transistors could be placed on a single chip.

It was the time when the cost of research began to decline and private firms started entering the competition in contrast to the earlier years where the main burden was borne by the military. Transistor-Transistor logic (TTL) offering higher integration densities outlasted other IC families like ECL and became the basis of the first integrated circuit revolution. It was the production of this family that gave impetus to semiconductor giants like Texas Instruments, Fairchild and National Semiconductors. Early seventies marked the growth of transistor count to about 1000 per chip called the Large Scale Integration.

By mid eighties, the transistor count on a single chip had already exceeded 1000 and hence came the age of Very Large Scale Integration or VLSI. Though many improvements have been made and the transistor count is still rising, further names of generations like ULSI are generally avoided. It was during this time when TTL lost the battle to MOS family owing to the same problems that had pushed vacuum tubes into negligence, power dissipation and the limit it imposed on the number of gates that could be placed on a single die.

The second age of Integrated Circuits revolution started with the introduction of the first microprocessor, the 4004 by Intel in 1972 and the 8080 in 1974. Today many companies like Texas Instruments, Infineon, AllianceSemiconductors, Cadence, Synopsys, Celox Networks, Cisco, Micron Tech, National Semiconductors, ST Microelectronics, Qualcomm, Lucent, Mentor Graphics, Analog Devices, Intel, Philips, Motorola and many other firms have been established and are dedicated to the various fields in "VLSI" like Programmable Logic Devices, Hardware Descriptive Languages, Design tools, Embedded Systems etc.

Fabrication Process

Why polysilicon gate? The most significant aspect of using polysilicon as the gate electrode is its ability to be used as a further mask to allow precise definition of source and drain regions. This is achieved with minimum gate to source/drain overlap, which leads to lower overlap capacitances and improved circuit performance.

Procedure: A thick layer of oxide is grown on the wafer surface which is known as field oxide (FOX). It is much thicker than the gate oxide. It acts as shield which protects the underlying substrate from impurities when other processes are being carried out on the wafer. Besides, it also aids in preventing conduction between unrelated transistor source/drains. In fact, the thick FOX can act as a gate oxide for a parasitic MOS transistor. The threshold voltage of this transistor is much higher than that of a regular transistor due to thick field oxide. The high threshold voltage is further ensured by introducing channel-stop diffusion underneath the field oxide, which raises the impurity concentration in the substrate in the areas where transistors are not required.

A window is opened in the field oxide corresponding to the area where the transistor is to be made. A thin highly controlled layer of oxide is deposited where active transistors are desired. This is called gate oxide or thinox. A thick layer of silicon dioxide is required elsewhere to isolate the individual transistors.

The thin gate oxide is etched to open windows for the source and drain diffusions. Ion implantation or diffusion is used for the doping. The former tends to produce shallower junctions which are compatible with fine dimension processes. As the diffusion process occurs in all directions, the deeper a diffusion is the more it spreads laterally. This lateral spread determines the overlap between gate and source/drain regions.

VLSI Design

VLSI chiefly comprises of Front End Design and Back End design these days. While front end design includes digital design using HDL, design verification through simulation and other verification techniques, the design from gates and design for testability, backend design comprises of CMOS library design and its characterization. It also covers the physical design and fault simulation.
While Simple logic gates might be considered as SSI devices and multiplexers and parity encoders as MSI, the world of VLSI is much more diverse. Generally, the entire design procedure follows a step by step approach in which each design step is followed by simulation before actually being put onto the hardware or moving on to the next step.
The major design steps are different levels of abstractions of the device as a whole:

1. Problem Specification: It is more of a high level representation of the system. The major parameters considered at this level are performance, functionality, physical dimensions, fabrication technology and design techniques. It has to be a tradeoff between market requirements, the available technology and the economical viability of the design. The end specifications include the size, speed, power and functionality of the VLSI system.

2. Architecture Definition: Basic specifications like Floating point units, which system to use, like RISC (Reduced Instruction Set Computer) or CISC (Complex Instruction Set Computer), number of ALU’s cache size etc.

3. Functional Design: Defines the major functional units of the system and hence facilitates the identification of interconnect requirements between units, the physical and electrical specifications of each unit. A sort of block diagram is decided upon with the number of inputs, outputs and timing decided upon without any details of the internal structure.

4. Logic Design: The actual logic is developed at this level. Boolean expressions, control flow, word width, register allocation etc. are developed and the outcome is called a Register Transfer Level (RTL) description. This part is implemented either with Hardware Descriptive Languages like VHDL and/or Verilog. Gate minimization techniques are employed to find the simplest, or rather the smallest most effective implementation of the logic.

5. Circuit Design: While the logic design gives the simplified implementation of the logic,the realization of the circuit in the form of a netlist is done in this step. Gates, transistors and interconnects are put in place to make a netlist. This again is a software step and the outcome is checked via simulation.

6. Physical Design: The conversion of the netlist into its geometrical representation is done in this step and the result is called a layout. This step follows some predefined fixed rules like the lambda rules which provide the exact details of the size, ratio and spacing between components.

This step is further divided into sub-steps which are:
6.1 Circuit Partitioning: Because of the huge number of transistors involved, it is not possible to handle the entire circuit all at once due to limitations on computational capabilities and memory requirements. Hence the whole circuit is broken down into blocks which are interconnected.
6.2 Floor Planning and Placement: Choosing the best layout for each block from partitioning step and the overall chip, considering the interconnect area between the blocks, the exact positioning on the chip in order to minimize the area arrangement while meeting the performance constraints through iterative approach are the major design steps taken care of in this step.
6.3 Routing: The quality of placement becomes evident only after this step is completed. Routing involves the completion of the interconnections between modules. This is completed in two steps. First connections are completed between blocks without taking into consideration the exact geometric details of each wire and pin. Then, a detailed routing step completes point to point connections between pins on the blocks.
6.4 Layout Compaction: The smaller the chip size can get, the better it is. The compression of the layout from all directions to minimize the chip area thereby reducing wire lengths, signal delays and overall cost takes place in this design step.
6.5 Extraction and Verification: The circuit is extracted from the layout for comparison with the original netlist, performance verification, and reliability verification and to check the correctness of the layout is done before the final step of packaging.

7. Packaging: The chips are put together on a Printed Circuit Board or a Multi Chip Module to obtain the final finished product.

Initially, design can be done with three different methodologies which provide different levels of freedom of customization to the programmers. The design methods, in increasing order of customization support, which also means increased amount of overhead on the part of the programmer, are FPGA and PLDs, Standard Cell (Semi Custom) and Full Custom Design.

While FPGAs have inbuilt libraries and a board already built with interconnections and blocks already in place; Semi Custom design can allow the placement of blocks in user defined custom fashion with some independence, while most libraries are still available for program development. Full Custom Design adopts a start from scratch approach where the programmer is required to write the whole set of libraries and also has full control over the block development, placement and routing. This also is the same sequence from entry level designing to professional designing.