A Secure and Dynamic Multi-keyword Ranked Search Scheme over Encrypted Cloud Data

OBJECTIVE:
The main objective of the system is to present a secure multi-keyword ranked search scheme over encrypted cloud data.

ABSTRACT:
Due to the increasing popularity of cloud computing, more and more data owners are motivated to outsource their data to cloud servers for great convenience and reduced cost in data management. However, sensitive data should be encrypted before outsourcing for privacy requirements, which obsoletes data utilization like keyword-based document retrieval. In this paper, we present a secure multi-keyword ranked search scheme over encrypted cloud data, which simultaneously supports dynamic update operations like deletion and insertion of documents. Specifically, the vector space model and the widely-used TF×IDF model are combined in the index construction and query generation. We construct a special tree-based index structure and propose a “Greedy Depth-first Search” algorithm to provide efficient multi-keyword ranked search.

Technofist,
YES Complex, 19/3&4, 2nd Floor, Dinnur Main Road, R.T.Nagar, Bangalore-560032 Ph:080-40969981, Website:www.technofist.com. E-mail:technofist.projects@gmail.com
INTRODUCTION:

CLOUD computing has been considered as a new model of enterprise IT infrastructure, which can organize huge resource of computing, storage and applications, and enable users to enjoy ubiquitous, convenient and on-demand network access to a shared pool of configurable computing resources with great efficiency and minimal economic overhead. Attracted by these appealing features, both individuals and enterprises are motivated to outsource their data to the cloud, instead of purchasing software and hardware to manage the data themselves.